

THE FRUITS AND VEGETABLES INDUSTRY SERIES

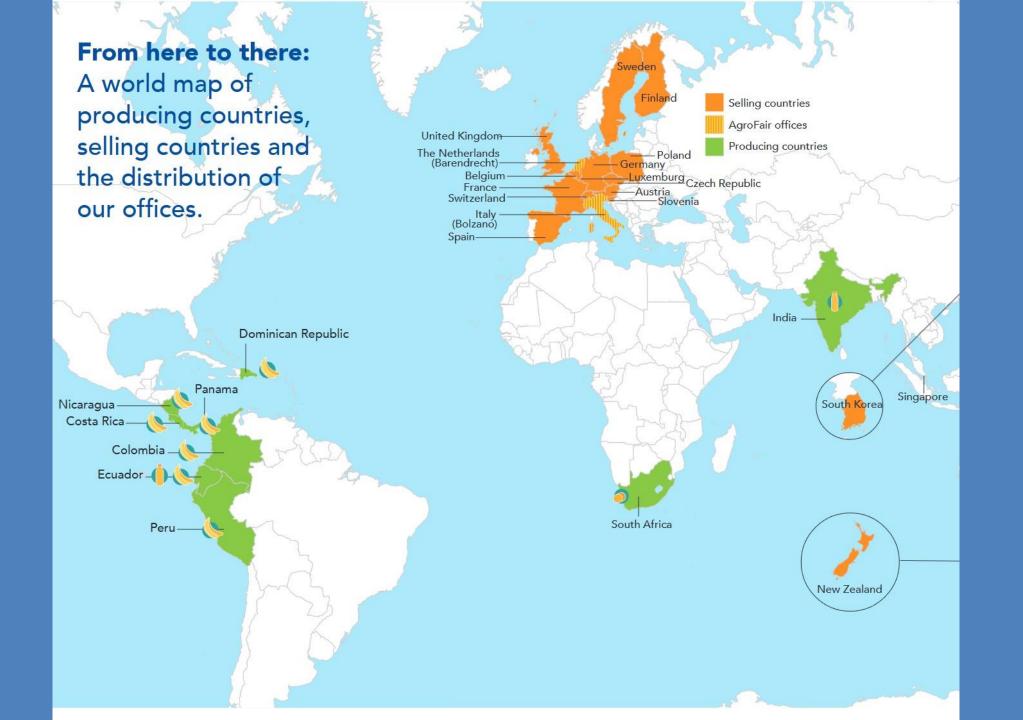
29 October 2024

Session nº8

Market challenges and geopolitical issues affecting trade flows in Fruits and Vegetables (F&V)

AgroFair RIGHT FROM THE PRODUCER

Our supply chain


For more information: www.agrofair.nl/supply-chain

Challenges

- Geopolitical shocks: rising costs (fertilizer, transport, irrigation) -> lagging fertilization -> lower yield and quality (more than a year later) some producers stopping.
- Climate change -> decreasing volume and quality, increasing pathogen pressure
 - Low rainfall in Panama: limits Panama canal capacity
- Labour shortage: low wages, high turnover -> affects quality and reliability
- Tightening of EU regulations: EU organic, deforestation, MRLs (maximum residue level), HRDD (Human Rights Due Diligence), CSRD (Corporate sustainability reporting) -> adding costs
 - favours low-regulation export destinations & local markets
 - disfavours small producers

Climate change

Gosts of inputs

Labour shortage and turnover

Regulations

Responses

- Contracts need to pass on price shocks to retailers e.g. by quarterly adjustment factors.
- Security of supply more important than lowest price long-term partnerships producerretailer
- Innovation: applying artificial intelligence / machine learning for predicting volumes & quality

Long-term partnerships

Include economic shocks in contracts

Technology for better predictions and quality

AgroFair Does Controlled Atmosphere Reduce Crown Rot in Organic Bananas?

Johannes W.H. van der Waal, BEng., MSc

AgroFair Europe B.V., Barendrecht, Netherlands

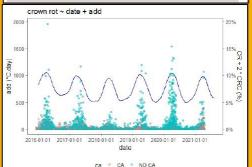
Conclusions

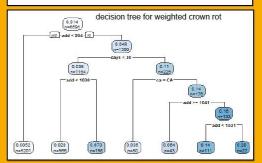
- 1. Crown rot (CR) susceptibility is related to fruit age - accumulated degree.days
- 2. A higher pulp temperature (PT) at arrival and a longer transit time are related to increased crown rot incidence. PT cause or effect? Or both?
- 3. Not using Controlled Atmosphere (CA) increases the incidence risk by 1.66 / 1.99 for mild and severe crown rot.
- 4. CA is useful in situations with add and transit times in highest quartiles.
- Further research: Extend to other countries. predict CR with machine learning models.

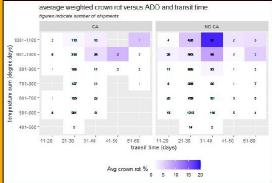
Introduction

- 1. Organic bananas are an important fruit category.
- 2. No synthetic chemicals post-harvest antifungal protection of the crown is a challenge
- 3. Organic post-harvest products are prone to fraud (adulteration with quaternary ammonium compounds).
- 4. CA is reported to reduce crown rot in tests, but does it work on a commercial scale? Is it worth the additional cost?

Experimental design


- 1. A data set of 6591 container shipments of organic bananas from Peru to Europe, 540 with CA. 6051 without CA.
- Crown rot assessment according to industry protocol, with and without CA.
- 3. Weather data are retrieved from meteostat.net API, for Piura, Peru
- 4. Accumulated degree days (add) computed on a 77 day growing cycle with 13.5°C cut-off.
- 5. Many zero values in dependent variable: hurdle regression, a combination of a binomial model for the zeros and a zerotruncated negative binomial count model. (library pscl).
- 6. Decision tree on weighted variable (C = CR + 2* CRC), (library rpart).




add	: accumulated degree days > 13.5°C			
add	: accumurated degree days > 13.5°C			
ADD	: add/100			
ca	: dummy variable for CA			
ays : transit time between pack and discharge				
avggrade	: average gride (girth) of the fruit			
maxtemp	: maximum pulp temperature on arrival			
season	: dummy variable for crown rot season (wk 8-25)			
Mild CR/ CR	: <20% of crown affected			
Severe CR / C	RC: > 20 % of crown affected			
С	: weighted crown rot (CR + 2 * CRC)			
theta = probab	ility of drawing O			

Results and discussion

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
CR	6591	0.007	0.024	0	0	0	0.43
CRC	6591	0.004	0.017	0	0	0	0.416
С	6591	0.014	0.052	0	0	0	0.98
add	6591	766.477	176.113	498.7	597.484	935.423	1054.981
ca	6591						
CA	1316	20%					
NO CA	5275	80%					
days	6591	27.424	3.488	18	26	29	60
maxtemp	6591	14.826	0.562	0	14.5	15.1	23.5

	mild CR	severe CR
Count model: (Intercept)	-11.29 ***	-11.37 ***
	(1.18)	(1.59)
Count model: ADD		0.41 ***
	(0.02)	(0.04)
Count model: caNO CA	0.51 ***	0.69 ***
	(0.07) 0.05 ***	(0.12)
Count model: days	0.05 ***	0.02 *
	(0.01)	(0.01)
Count model: avggrade	0.03	0.03
		(0.03)
Count model: maxtemp	0.46 ***	0.42 ***
		(0.06)
Count model: Log(theta)	27.55.55.55.	0.32 **
	(0.07)	
Zero model: (Intercept)		
	(0.25)	(0.30)
Zero model: season1	1.97 ***	2.31 ***
	(0.07)	(0.09)
Zero model: days	0.08 ***	0.09 ***
	(0.01)	(0.01)
AIC	13568.10	7719.22
	-6774.05	
Num. obs.	6591	6591

THE FRUITS AND VEGETABLES INDUSTRY SERIES

Thank you

